NETL Life Cycle Inventory Data Process Documentation File | Process Name: | Powder River Basin Surface Subbituminous Coal Mine,
Operations | | | | | |---|---|---|-----------------------------------|---|--------------| | Reference Flow: | 1 kg of Powder River Basin Subbituminous Coal | | | | | | Brief Description: | Based on a compilation of mines, a surface mine for Powder River Basin subbituminous coal in Wyoming, producing ~6 billion kg of coal per year. Assumes 32 scf/ton coalbed methane (CBM) emissions, adjustable CBM capture rates. | | | | | | | Section | I: Meta Da | ata | | | | Geographical Coverage: US | | | Region: Powder River Basin | | liver Basin | | Year Data Best Represer | nts: 2008 | | | | | | Process Type: | Extracti | on Process | (EP) | | | | Process Scope: | Cradle-t | to-Gate Pro | cess (CG) | | | | Allocation Applied: | No | | | | | | Completeness: | All Rele | vant Flows | Captured | | | | Flows Aggregated in Dat | a Set: | | | | | | | Energy Use | | nergy P&D | | Material P&D | | Relevant Output Flows I | ncluded in Data | a Set: | | | | | Releases to Air: | Greenhouse Gase | es 🖂 C | Criteria Air Poll | utants $oxed{ extstyle $ | Other | | Releases to Water: | Inorganic Emission | ons 🖂 C | Organic Emission | ons _ | Other | | Water Usage: Water Consump | | ion 🖂 V | Vater Demand | (throughp | out) | | Releases to Soil: | Inorganic Release | es 🗌 C | Organic Releas | es 🗌 | Other | | Adjustable Process Para | meters: | | | | | | Coalbed methane emissions (CBM) | | Emissions of coalbed methane (CBM) from the coal mine and from mined coal | | | | | Tracked Input Flows: | | | | | | | Diesel Combustion, Mobile
Sources, Truck [Refinery products] | | Diesel from crude oil, combusted in trucks | | | | | Power [Electric Power] | | Electricity usage for mine operations | | | | | Ammonium Nitrate [Inorganic | | The amount of ammonium nitrate needed for | | | | Intermediate Products] ammonium nitrate fuel oil (ANFO) explosives ## **NETL Life Cycle Inventory Data Process Documentation File** Light Fuel Oil [Crude Oil Products] Light fuel oil (from crude oil) needed for ANFO explosives **Tracked Output Flows:** PRB Coal [Hard Coal Products] Coal mine production flow for Powder River Basin subbituminous coal #### **Section II: Process Description** #### **Associated Documentation** This unit process is composed of this document and the data sheet (DS) DS_Stage1_O_CoalMine_PRB_2010.03.xls, which provides additional details regarding calculations, data quality, and references as relevant. #### **Goal and Scope** The scope of this process covers the production of coal during operation of a surface mine for Powder River Basin subbitumious coal, from resource extraction to the boundary for LC Stage #2 (e.g., transport of coal). The process is based on the reference flow of 1 kg of cleaned, crushed (to approximately 3 inches) Powder River Basin coal, as described below, and in **Figure 1**. Considered are the consumption of electricity, consumption of diesel, emissions of methane associated with off-gassing from the coal/coal mine, particulate matter emissions associated with fugitive coal dust, water input flows required for mining and cleaning operations, wastewater flows including stormwater, emissions of criteria air pollutants, and air emissions of mercury and ammonia. The consumption of diesel is modeled as a tracked input flow in which the associated emissions from diesel combustion are accounted for in an externally linked unit process. ## **Boundary and Description** Operations of the coal mine are based on operations from a compilation of the three largest producers of Powder River Basin coal (Peabody Energy's North Antelope-Rochelle mine, Arch Coal, Inc.'s Black Thunder Mine, and Kennecott Energy's Cordero Rojo Operation) to produce an average annual rate of 60.8 billion kilograms (NMA 2009). The Powder River Basin is located in the southeast portion of Montana and the northeast portion of Wyoming. Sources reviewed in assessing coal mine operations include facility and equipment needs, production raters, electricity usage, particulate air emissions, methane emissions, explosives usage, and additional governmental publications on coal and mines. Figure 1 provides an overview of the boundary of this unit process. As shown, upstream emissions associated with the production and delivery of electricity and diesel fuel, ammonium nitrate, and light fuel oil are accounted for outside of the boundary of this unit process. Figure 1: Unit Process Scope and Boundary Coal is extracted from a surface Powder River Basin coal seam through an open pit mining process. Blasting with ammonium nitrate fuel oil (ANFO) explosives occurs in drilled holes to remove the overburden and expose the coal seam for extraction. The removal of the overburden occurs with the use of draglines, powered by electricity, which pile the overburden in a different location to enable extraction of the coal. After the dragline has removed as much as possible, large electric shovels are used for the removal of the remaining overburden. The coal is removed using a truck and shovel approach. The trucks move the coal 3.2 km (2 miles) to the preparation facility for grinding and crushing to the proper size for transport. No cleaning of the coal occurs based on the coal properties. A conveyor belt carries the crushed coal from the preparation facility to the loading silo. The coal is then loaded into rail cars for transport (LC Stage #2) to the plant (LC Stage #3). Coalbed methane emissions from the coal mine, and from the extracted coal during processing and storage, were estimated based on U.S. EPA estimates of methane release for coal mines (U.S. EPA 2008). An 80 percent methane capture rate was used based on data for existing and potential recovery rates (U.S. EPA 2008), which resulted in a coalbed methane emission factor of 7 standard cubic feet per short ton of coal. For a sensitivity analysis, one may assume that no coalbed methane capture method was employed, by updating the appropriate adjustable parameter. It was assumed that all emitted methane was released to the atmosphere. The average Powder River Basin coal deposit has 30-40 standard cubic feet per short ton. Other types of coal may have up to 360 standard cubic feet per short ton of emissions. Electricity and diesel use were based on data points published by Peabody Energy in reference to their North Antelope Rochelle Mine in Wyoming (Burley 2008 and Peabody 2005). The data were scaled such that they were applicable to the size of the mine being modeled. Diesel is assumed to be ultra low sulfur diesel (ULSD; 15 ppm sulfur). The emissions associated with the combustion of diesel are accounted for in an externally linked unit process. Emissions to air from ammonium nitrate and fuel oil (ANFO) based explosives were calculated using Emission Estimation Technique Manual for Explosives Detonation and Firing Ranges (NPI, 1999). A combustion efficiency of 98 percent was assumed. Unspecified VOCs were calculated as the difference in accounted for VOCs and total VOCs using the weighted average molecular weight of accounted for VOCs for the molecular weight of unspecified VOCs. CO₂ emissions from ANFO combustion were determined by assuming that all unaccounted for carbon in combusted ANFO become CO₂. Emissions of particulate matter included those due to fugitive coal dust from the mining process are calculated as PM10 and PM2.5. Total coal dust emissions were obtained from the EPA's AP 42's Mineral Products Industry section (EPA 2009). A PM2.5/PM10 ratio was not available for fugitive dust from storage piles so it was assumed to be the same ratio as that of truck loading. It was further assumed that there was an 85 percent reduction of fugitive waste emissions due to remediation efforts. Water use was estimated based on an environmental impact study completed on West Antelope II mine located in the Powder River Basin of Wyoming (BLM 2008) with other sources used to calculate fraction ground or surface fresh or saline water fractions and maximum and minimum values for uncertainty (USGS 2000a; USGS 2000b; EIA 2013; HKM 2002). An option was also added to calculate fresh and saline ground water use given a user-defined fresh surface water usage. If the fresh and saline ground water ### **NETL Life Cycle Inventory Data - Process Documentation File** use is not calculated, then the user is responsible for ensuring that the total fractions add up to 1 and are within the maximum and minimum values. Water emissions, including flows and concentrations of relevant inorganic constituents and solids entering the waterstream, were taken from available National Pollutant Discharge Elimination System permit reporting documentation (NPDES 2009). Properties of Powder River Basin coal relevant to this unit process are indicated in **Table 1**. **Table 2** provides a summary of modeled input and output flows. Additional details regarding input and output flows, including calculation methods, are contained in the associated DS sheet. **Table 1: Properties of Powder River Basin Coal (NETL 2011)** | Proximate
Analysis | Dry Basis,
% | As
Received,
% | |-----------------------|---------------------------------|----------------------| | Moisture | 0 | 25.77 | | Ash | 11.04 | 8.19 | | Volatile Matter | 40.87 | 30.34 | | Fixed Carbon | 48.09 | 35.7 | | Total | 100 | 100 | | Ultimate
Analysis | Dry Basis,
% | As
Received,
% | | Carbon | 67.45 | 50.07 | | Hydrogen | 4.56 | 3.38 | | Nitrogen | 0.96 | 0.71 | | Sulfur | 0.98 | 0.73 | | Chlorine | 0.01 | 0.01 | | Ash | 11.03 | 8.19 | | Moisture | 0 | 25.77 | | Oxygen (Note
A) | 15.01 | 11.14 | | Total | 100 | 100 | | Heating Value | Dry Basis,
(Dulong
Calc.) | As
Received,
% | | HHV, kJ/kg | 26,787 | 19,920 | | HHV, Btu/lb | 11,516 | 8,564 | | LHV, kJ/kg | 25,810 | 19,195 | | LHV, Btu/lb | 11,096 | 8,252 | Notes: (A) the proximate analysis assumes sulfur as volatile matter; (B) by difference. **Table 2: Unit Process Input and Output Flows** | Flow Name* | Value | Units (Per
Reference Flow) | DQI | |--|-----------|-------------------------------|-----| | Inputs | | | | | Ammonium nitrate [Inorganic intermediate products] | 1.45E-03 | kg | 2,2 | | Diesel Combustion, Mobile Sources, Truck [Refinery products] | 8.93E-04 | kg | 2,2 | | Light fuel oil [Crude oil products] | 1.01E-04 | kg | 2,2 | | Power [Electric power] | 1.40E-03 | kWh | 2,2 | | Water (ground water, fresh) [Water] | 1.44E-02 | L | 2,2 | | Water (ground water, saline) [Water] | 1.09E-02 | L | 2,2 | | Water (surface water, fresh) [Water] | 5.08E-03 | L | 2,2 | | Outputs | | | | | PRB Coal (NETL) [Hard coal products] | 1 | kg | 2,2 | | Carbon dioxide [Inorganic emissions to air] | 6.752E-02 | kg/kg coal | 1,1 | | Carbon monoxide [Inorganic emissions to air] | 1.051E-05 | kg/kg coal | 1,1 | | Sulphur dioxide [Inorganic emissions to air] | 1.481E-06 | kg/kg coal | 1,1 | | Methane [Organic emissions to air (group VOC)] | 1.471E-04 | kg/kg coal | 1,2 | | Nitrogen dioxide [Inorganic emissions to air] | 3.723E-05 | kg/kg coal | 1,1 | | NMVOC (unspecified) [Group NMVOC to air] | 6.678E-06 | kg/kg coal | 1,1 | | Hexane [Group NMVOC to air] | 3.339E-03 | kg/kg coal | 1,1 | | Benzene [Group NMVOC to air] | 2.039E-04 | kg/kg coal | 1,1 | | Toluene [Group NMVOC to air] | 6.678E-08 | kg/kg coal | 1,1 | | Ethylbenzene [Group NMVOC to air] | 4.770E-02 | kg/kg coal | 1,1 | | Xylene [Group NMVOC to air] | 4.046E-03 | kg/kg coal | 1,1 | | Cumene [Group NMVOC to air] | 1.126E-02 | kg/kg coal | 1,1 | | Dust (PM10) [Particles to air] | 5.279E-05 | kg/kg coal | 1,1 | | Dust (PM2.5) [Particles to air] | 3.731E-06 | kg/kg coal | 1,1 | | Aluminium [Heavy metals to fresh water] | 2.51E-10 | kg/kg coal | 2,2 | | Arsenic (+V) [Heavy metals to fresh water] | 3.53E-11 | kg/kg coal | 2,2 | | Barium [Inorganic emissions to fresh water] | 8.88E-10 | kg/kg coal | 2,2 | | Biological oxygen demand (BOD) [Analytical measures to fresh water] | 7.97E-08 | kg/kg coal | 2,2 | | Boron [Inorganic emissions to fresh water] | 4.86E-09 | kg/kg coal | 2,2 | | Cadmium (+II) [Heavy metals to fresh water] | 1.59E-12 | kg/kg coal | 2,2 | | Calcium (+II) [Inorganic emissions to fresh water] | 1.14E-06 | kg/kg coal | 2,2 | | Total organic carbon, TOC (Ecoinvent) [ecoinvent long-term to fresh water] | 9.65E-08 | kg/kg coal | 2,2 | | Chemical oxygen demand (COD) [Analytical measures to fresh water] | 2.69E-07 | kg/kg coal | 2,2 | | Chromium (unspecified) [Heavy metals to fresh water] | 1.59E-10 | kg/kg coal | 2,2 | | Copper (+II) [Heavy metals to fresh water] | 7.81E-11 | kg/kg coal | 2,2 | | Cyanide [Inorganic emissions to fresh water] | 1.13E-10 | kg/kg coal | 2,2 | ## **NETL Life Cycle Inventory Data - Process Documentation File** | Fluoride [Inorganic emissions to fresh water] | 1.79E-10 | kg/kg coal | 2,2 | |---|----------|------------|-----| | Iron [Heavy metals to fresh water] | 1.36E-08 | kg/kg coal | 2,2 | | Lead (+II) [Heavy metals to fresh water] | 1.61E-09 | kg/kg coal | 2,2 | | Magnesium (+III) [Inorganic emissions to fresh water] | 1.62E-11 | kg/kg coal | 2,2 | | Manganese (+II) [Heavy metals to fresh water] | 1.40E-06 | kg/kg coal | 2,2 | | Mercury (+II) [Heavy metals to fresh water] | 2.51E-09 | kg/kg coal | 2,2 | | Nickel (+II) [Heavy metals to fresh water] | 1.59E-13 | kg/kg coal | 2,2 | | Nitrate (as total N) [Inorganic emissions to fresh water] | 1.59E-10 | kg/kg coal | 2,2 | | Ammonia, as N [Inorganic emissions to fresh water] | 9.20E-09 | kg/kg coal | 2,2 | | Nitrogen (as total N) [Inorganic emissions to fresh water] | 4.77E-09 | kg/kg coal | 2,2 | | Phosphorus [Inorganic emissions to fresh water] | 1.52E-08 | kg/kg coal | 2,2 | | Selenium [Heavy metals to fresh water] | 2.39E-08 | kg/kg coal | 2,2 | | Sodium (+I) [Inorganic emissions to fresh water] | 2.49E-08 | kg/kg coal | 2,2 | | Total Dissolved Solids [Analytical measures to fresh water] | 2.96E-10 | kg/kg coal | 2,2 | | Total Suspended Solids [Analytical measures to fresh water] | 2.93E-11 | kg/kg coal | 2,2 | | Strontium [Heavy metals to fresh water] | 3.46E-06 | kg/kg coal | 2,2 | | Sulfates [Inorganic emissions to fresh water] | 2.38E-05 | kg/kg coal | 2,2 | | Zinc (+II) [Heavy metals to fresh water] | 1.62E-07 | kg/kg coal | 2,2 | | Water (wastewater) [Water] | 1.59E-02 | L/kg coal | 2,2 | ^{*} **Bold face** clarifies that the value shown *does not* include upstream environmental flows. Upstream environmental flows were added during the modeling process using GaBi modeling software, as shown in Figure 1. Inventory items not included are assumed to be zero based on best engineering judgment or assumed to be zero because no data was available to categorize them for this unit process at the time of its creation. #### **Embedded Unit Processes** None. ## **NETL Life Cycle Inventory Data – Process Documentation File** ## References | BLM 2008 | BLM. 2008. <i>Draft Environmental Impact Study, West Antelope II Coal Lease Application, Chapter 4: Cumulative Environmental Consequences</i> . U.S. Department of the Interior, Bureau of Land Management. WYW163340. http://www.blm.gov/pgdata/etc/medialib/blm/wy/information/NEP A/cfodocs/westantelope.Par.18077.File.dat/008ch4.pdf (Accessed December 21, 2009). | |---------------|---| | Burley 2008 | Burley, J.B. 2008. <i>Reclamation and Restoration Newsletter, Winter 2008</i> . ASLA. http://www.asla.org/ppn/article.aspx?id=21152 (Accessed February 9, 2010) | | NETL 2011 | NETL. 2011. Cost and Performance Baseline for Fossil Energy Plants, Volume 3b: Low Rank Coal to Electricity: Combustion Cases. Pittsburgh, PA: National Energy Technology Laboratory. | | NMA 2009 | National Mining Association. 2009. 2008 Coal Producer Survey. National Mining Association. Washington, D.C. May, 2009. http://www.nma.org/pdf/members/coal_producer_survey2008.pdf (Accessed December 18, 2009). | | NPI 1999 | Emission Estimation Technique Manual for Explosives Detonation and Firing Ranges. Department of the Environment, Water, Heritage and the Arts. First published March, 1999. | | Peabody 2005 | Peabody Energy Company. 2005. <i>Mine Energy Assessment, Supplemental Report, Peabody Energy Company, Gillette, Wyoming</i> . Peabody Energy Company. | | U.S. EPA 2006 | US EPA. 2006. AP 42, Fifth Edition, Volume I, Chapter 13: Miscellaneous Sources. U.S. Environmental Protectin Agency. http://www.epa.gov/ttn/chief/ap42/ch13/final/c13s0204.pdf (Accessed January 23, 2015). | | U.S. EPA 2008 | U.S. Environmental Protection Agency. 2008. <i>Identifying Opportunities for Methane Recovery at U.S. Coal Mines: Profiles of Selected Gassy Underground Coal Mines 2002-2006.</i> U.S. Environmental Protection Agency, Coalbed Methane Outreach Program. Report Number: EPA 430-K-04-003. | | U.S. EPA 2013 | EPA. 2013. National Pollutant Discharge Elimination System Permit, Water Quality Reporting Documentation. U.S. Environmental Protection Agency. http://www.epa-echo.gov/echo/compliance_report_water.html (Accessed April 4, 2013). | | USGS 2000a | U.S. Geological Survey. 2000. Estimated Use of Water in the United States: County-Level Data for 2005. United States | | V | My | |---|------| | Ę | NETL | ## **NETL Life Cycle Inventory Data – Process Documentation File** | | Geological Survey.
http://water.usgs.gov/watuse/data/2005/mtco2005.xls (accessed April 1, 2013). | |------------|---| | USGS 2000b | U.S. Geological Survey. 2000. Estimated Use of Water in the United States: County-Level Data for 2005. United States Geological Survey. http://water.usgs.gov/watuse/data/2005/wyco2005.xls (accessed | | | April 1, 2013). | | EIA (2013) | Energy Information Administration 2013. Historical Detailed Coal Production Data (1983-2011). US Energy Information Agency: Washington, DC. (accessed 04/01/2013) | | HKM (2002) | HKM Engineering Inc. 2002. <i>Northeast Wyoming River Basins Water Plant Technical Memoranda, Appendix G, Industrial Water Us.</i> Wyoming State Water Plan: Cheyenne, WY.http://waterplan.state.wy.us/plan/newy/techmemos/induse.ht ml (Accessed 4/3/2013) | | | | #### **Section III: Document Control Information** **Date Created:** February 10, 2010 **Point of Contact:** Timothy Skone (NETL), Timothy.Skone@NETL.DOE.GOV **Revision History:** 03APR2013 Water use and emissions updated to newer data. 20JAN2015 Combustion emissions removed and diesel input replaced by "Diesel Combustion, Mobile Source, Truck" - Speciated fugitive dust emissions by size using PM2.5/PM10 ratio from existing source - Air emissions from ANFO combustion were added to the Air Emissions Factors and Data Summary tabs - Added inventory level DQI to Data Summary tab #### **How to Cite This Document:** This document should be cited as: NETL (2010). NETL Life Cycle Inventory Data – Unit Process: Coal Mine Operation – Powder River Basin – Surface Mining. U.S. Department of Energy, National Energy Technology Laboratory. Last Updated: January 2015 (version 03). www.netl.doe.gov/energy-analyses (http://www.netl.doe.gov/energy-analyses) #### **Section IV: Disclaimer** Neither the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) nor any person acting on behalf of these organizations: - A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe on privately owned rights; or - B. Assumes any liability with this report as to its use, or damages resulting from the use of any information, apparatus, method, or process disclosed in this document. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by NETL. The views and opinions of the authors expressed herein do not necessarily state or reflect those of NETL.